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Abstract— Spectral Graph Theory provides a helpful 

mathematical framework for analyzing networks through 

their graph and matrix representations. This paper explores 

its application in community detection within social 

networks, by utilizing spectral clustering methods to 

partition users based on shared interests and relationships 

with others. By using the properties of eigenvalues and 

eigenvectors of the Laplacian matrix of the graph, the 

natural divisions in the network can be identified. A Python 

implementation demonstrates the effectiveness of this 

approach, visualizing clusters and offering insights into the 

graph's structure. The results reveal that spectral clustering 

is a robust method for identifying communities, with 

potential applications in social media platforms and beyond. 
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I.   INTRODUCTION 

In the current era, where most is happening online, 

online social networks play a key role in communication 

and collaboration, whether it be personal or professional 

uses. Social media apps such as Instagram, X (Twitter), or 

LinkedIn have been the main platform for connecting 

millions of users worldwide through their massive social 

network. This network tells many interpersonal 

connections, and how connected those connections are.  

 

These connections can be based on factors, such as the 

number of interactions the two individuals have, or even 

the interests these people share in common. By interacting 

with another person, an individual can get to know more 

of said person. Therefore, building relationships can be 

said to have many quality interactions with said person. 

Another factor is having things in common. People find it 

easier to connect and communicate with others who share 

things in common, it could be a phenomenon, an interest, 

or even common connections to other people. By these 

factors, understanding social networks can help us in 

building easier connections with other people if we know 

which people to connect to.  

 

Analyzing social networks can help reveal many 

valuable insights to solve important problems, such as 

understanding how information is spread, or identifying 

the key individuals who wield the biggest influence in a 

social setting. These problems are hugely relevant in 

digital marketing, user management, or in big data 

analysis. 

 

Analysis is especially helpful to identify communities, 

groups of people which have a strong relationship with 

one another. As more and more people join social media 

platforms, it may be difficult for a new user to hop in and 

find others to connect with. By grouping said users, they 

can choose a group of similar people with similar interests 

or backgrounds, instead of finding one specific user one 

by one to connect with. 

 

As graphs are a representation of networks, Spectral 

Graph Theory is a perfect fit for analyzing social 

networks, as it is a branch of graph theory, which 

provides more powerful mathematical analysis of graphs 

with the help of concepts from linear algebra, especially 

eigenvalues and eigenvectors. Applications of this theory 

can be used in many fields, from social sciences to 

computer science. This paper will focus on how Spectral 

Graph Theory can be utilized to get clusters or partitions 

in a social network, so that it provides an effective 

method to group users of a social media app. 

 

II.   THEORETICAL FOUNDATIONS 

A. Graph Theory 

Graphs are mathematical representations of a network, 

which consists of nodes and edges. Nodes represent a 

single entity, and edges are the connections that nodes 

have to one another. In the context of social networks, a 

node can represent an individual user, and an edge 

represents the relationship between users. A number can 

be assigned to an edge, showing how close the 

relationship is, making it a weighted graph. 

 

1. Partition 

In graph theory, a partition is a group of nodes 

which have a stronger interconnectivity with one 

another as composed to the other nodes outside the 

group. In the context of social networks, this mirrors 

how communities are. The process of dividing graphs 

into clusters is called partitioning. With partitioning, 

the clusters will be mutually exclusive, which means 

every node will belong to one and only one cluster.  
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This raises a question as to how the graph can be 

partitioned. A partition must contain a strong 

interconnectivity inside, and not as strong for the 

outside. 

  
Picture 2.1. Graph Partitions 

Source: SDP: Scalable Real-time Dynamic Graph 

Partitioner[4]  

 

In partitioning the graph to two partitions, the 

problem effectively becomes how to cut the graph to 

two disjoint subsets. Fortunately, there is a topic which 

discusses this. 

 

2. Cut 

A cut is a way of dividing the nodes (vertices) of a 

graph into two disjoint subsets, and the cut size is the 

number (or total weight) of edges that have one 

endpoint in each subset. [5] 

 

Formally, it is defined as the division of nodes V into 

two subsets S and T such that: 

 

S ∪ T = V   S ∩ T = ∅ 

 

The set of edges that connect nodes in S to nodes in T 

is called the cut-set, and the cut size is the number of 

edges in the cut-set. If the edges have weights, the cut 

size is the sum of the weights of the edges. 

 

 
Picture 2.2. Cut Size 

Source: Spectral Clustering[5] 

 

3. Normalized Cut 

A cut(A, B) alone can lead to unbalanced partitions. 

For instance, isolating a single node as one cluster does 

minimize the cut, but would result in poor partitioning. 

To avoid this, the normalized cut balances the partition 

by incorporating the size (or "volume") of each subset, 

so that the partitions stay reasonably big, considering 

the edges with other nodes of its group. 

 

 
Picture 2.3. Normalized Cut (Ncut) 

Source: Spectral Clustering[5] 

 

B. Eigenvalues and Eigenvectors 

In linear algebra, eigenvalues and eigenvectors are 

characteristic components of a square matrix. These play 

an important role in understanding its linear 

transformations properties. They can be obtained through 

this characteristic equation below. 

 

det(λI – A) = 0 

 

where A is the square matrix, v is a non-zero eigenvector, 

and λ is an eigenvalue. An eigenvalue represents the 

scalar factor of an eigenvector when it is projected by the 

matrix. In the context of this paper, the eigenvalue and 

eigenvector are used on the matrix representation of a 

graph, which is the Laplacian Matrix, to help us identify 

the most balanced cuts to make. 

 

C. Matrix Representations of A Graph 

1. Degree Matrix 

A degree matrix is a diagonal matrix, where the 

value of aii is the number of edges that the node has. If 

the graph is weighted, the value would be the sum of 

all the edges connected to the node. 

 
Picture 2.4 Degree Matrix 

Source: https://www.geeksforgeeks.org/ 

 

2. Adjacency Matrix 

An adjacency matrix is a matrix representation of a 

graph where the element aij is 1 if there is an edge 

connecting node i and j. If there is no edge, aij will be 0. 

If the graph is weighted, the value would be the weight 

of the edge.  
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Picture 2.5 Adjacency Matrix  

Source: https://www.geeksforgeeks.org/ 

 

3. Laplacian Matrix 

A Laplacian Matrix is one of the matrix 

representations of a graph, and the key tool to spectral 

graph analysis. This matrix represents how the nodes 

are connected, and its properties can provide valuable 

information on the graph structure. It can identify the 

number of connected components in the graph based on 

the number of zero eigenvalues of the matrix. For 

instance, a graph with one connected component will 

have a single zero eigenvalue on its Laplacian Matrix. 

It is defined by this equation below. 

 

L = D – A 

 

Where D is the degree matrix, and A is the adjacency 

matrix. 

 
Picture 2.6 Laplacian Matrix 

Source: 

https://www.researchgate.net/publication/305653264_Exp

erimental_study_on_relationship_between_indices_of_ne

twork_structure_and_spectral_distribution_of_graphs 

 

D. Spectral Clustering 

Spectral clustering aims to partition a graph G into 

clusters such that the connections within clusters are 

strong, and the connections between clusters are as weak 

as possible. Mathematically, this is often formalized using 

the cut of the graph.  

 

While minimizing this cut ensures weak inter-cluster 

connections, it can result in unbalanced clusters. To 

address this, the normalized cut (Ncut) is introduced. 

However, directly optimizing Ncut is computationally 

intractable (NP-hard). To simplify, the problem is made 

relaxed using linear algebra. 

 

The problem can be relaxed by encoding cluster 

membership through a vector f, where nodes with similar 

values belong in a cluster, with positive values, and the 

other, with negative values. This relaxation transforms the 

Ncut optimization into minimizing the smoothness of f 

over the graph, represented by the quadratic form of the 

Laplacian matrix L. The quadratic form ensures that 

nodes with strong connections are assigned similar values 

in f. However, this only considers the cut term in the Ncut 

equation. The normalization term will then balance the 

cut. 

  

 
Picture 2.6. Ncut Relaxation  

Source: Spectral Clustering[5] 

 

The optimization problem then becomes finding the 

minimum Ncut. This is equivalent to solving the 

eigenvalue problem for the Laplacian matrix L.  

 

 
Picture 2.7. Ncut Relaxation to Eigenvalue Problem 

Source: Spectral Clustering[5] 

 

Those eigenvalues will then be sorted in ascending order. 

The first eigenvalue will always be zero, because it 

represents uniform clustering (there is nothing to cluster 

when dividing a graph to a single partition).  

 

After obtaining the eigenvalues, the smallest eigenvalue 

will be zero, and the second smallest eigenvalue will 

correspond to the Fiedler vector, which is key to dividing 

the graph to two partitions, as the vector will contain 

positive and negative values, and they correspond to a 

partition based on their sign. 

 

III.   IMPLEMENTATION 

To demonstrate spectral clustering for community 

detection in social networks, a program implementation 

was made.  

https://www.geeksforgeeks.org/
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Picture 3.1. Overall Flowchart of the Program 

Source: Author 

 

A. Tools and Libraries 

The program is made and implemented in 

Python, considering the amount of tools and libraries 

available which assisted the implementation of this 

spectral clustering algorithm. Those tools and 

libraries include: 

1. NumPy: For numerical operations, such as 

matrix manipulation. 

2. SciPy: For efficient computation of eigenvalues 

and eigenvectors. 

3. NetworkX: To create and manipulate the graph 

representation of the social network. 

4. Matplotlib: For visualizing the graph and its 

clusters. 

 

B. Functions 

a. create_graph 

First, the user can construct the graph, by 

inputting the amount of vertices in the graph. After 

that, the program will generate a randomized graph 

(with the probability of an edge forming between all 

nodes being 0.5). Then, the user will be asked 

whether to randomize the weights of the formed 

edges or to input them manually. Finally, the graph is 

constructed. 
 

 
Picture 3.2. create_graph function 

Source: Author  

 

b. compute_laplacian_matrix 

In the next step, the matrix representations of the 

graph will be computed. First, the adjacency matrix is 

obtained, and then the degree matrix is computed 

from the sum of the weights of all the edges 

connected to each node. Lastly, the Laplacian matrix 

is obtained from subtracting the degree matrix with 

the adjacency matrix. 

 

 
Picture 3.3. compute_laplacian_matrix function 

Source: Author  

 

c. spectral_clustering 

Next, the eigenvectors are extracted from the 

Laplacian matrix. The Fiedler vector is then obtained 

from the second smallest eigenvector, and based on 

the Fiedler vector, the graph is divided into two 

clusters, negative values gets grouped to cluster_1, 

and positive to cluster_2. 

 

 
Picture 3.4. spectral_clustering function 

Source: Author  

 

d. visualize_graph 

Lastly, the graph is visualized based on the 

clusters made, with cluster_1 being colored red, and 

cluster_2 blue. The graph nodes will be scattered, 

with the edge weight being present. 

 

 
Picture 3.5. visualize_graph function 

Source: Author  

 

 

IV.   RESULTS AND ANALYSIS 
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Picture 4.1. Program Execution Results with 6 Vertices  

 

 

 
Picture 4.2. Program Execution Results with 8 Vertices  

 

 

 
Picture 4.3. Program Execution Results with 34 Vertices 

(nx.karate_club_graph) 

 

The sign of the Fiedler vector's values determined the 

cluster membership of each node. Nodes with positive 

values were grouped in one cluster, while those with 

negative values formed another. Other than that, the 

magnitude of the Fiedler vector's values indicates how 

strongly a node was associated with its cluster. Nodes 

with values close to zero were observed to have weaker 

connections, being more neutral to neither clusters, and 

serving as boundary points between clusters. This insight 

is critical in understanding the structure of social 

networks, where such nodes may represent individuals 

with connections across communities. 

 

By examining the difference between the largest and 

smallest Fiedler vector values, the natural partitionability 

of the graph can be assessed. Larger differences suggests 

a clearer natural partitioning, whereas smaller differences 

indicates less distinct clusters. This metric can serve as a 

quantitative measure of the clustering's quality. 

 

However, this program also comes with its limitations, as 

it is only able to partition the graph to two clusters only, 

because it only relies on the Fiedler vector. The 

visualization is also quite poor on graphs which are more 

crowded in nodes and weights.  

 

V.   CONCLUSION 

Spectral Graph Theory proves to be a powerful 

mathematical help for community detection in social 

networks, especially spectral clustering, offering a 

computationally feasible and effective method for 

partitioning graphs. By utilizing the eigenvalues and 

eigenvectors of the Laplacian matrix, this approach 

identifies natural divisions in the graph, making the 

grouping of users based on shared relationships or 

interests possible. The Python implementation highlights 

the method's effectiveness and provides a practical 

example of its application. Future work could be explored 

extending this method to dividing to more than two 

clusters, dynamic graphs, or enabling real-time 

community detection in evolving social networks. 
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